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Measured ultimate tensile strengths in unidirectional fibre-reinforced composite materials have 
been observed to deviate from the linear predictions of the classical rule-of-mixtures 
relationship. The physical factors responsible are fibre-fibre interaction, inhomogeneous fibre 
distribution in the matrix and fibre misorientation to the loading direction. A recent 
modification to the classic rule-of-mixtures to account for fibre-fibre interaction has already 
resulted in good agreement between measured and predicted values of ultimate tensile 
strengths at high fibre volume fractions for Kevlar/epoxy composites. Additional modifications 
to the rule of mixtures to incorporate both fibre misorientation and inhomogeneous spread 
have been presented here. These modifications result in greater agreement between measured 
and predicted ultimate tensile strengths at low fibre volume fractions while retaining the 
accuracy of prediction at higher fibre volume fractions. Good agreement between measured 
and predicted values of inhomogeneous fibre spread were obtained at high fibre volume 
fractions. Furthermore, these additions to the classic rule-of-mixtures can be used to gauge 
the extent of each of the physical factors responsible for ultimate tensile strength reduction in 
unidirectional composite materials. 

1, I n t r o d u c t i o n  
Fibre-reinforced composites are being increasingly 
used owing to their potential for weight reduction, 
enhanced strength and stiffness, and improved reli- 
ability. Fibre-reinforced laminates enable tailoring of 
strength and stiffness properties to meet specific struc- 
tural needs. As the simplest unit of these laminates, 
individual laminae have been widely studied theoret- 
ically, and experimentally characterized in order to 
understand their behaviour under the action of ap- 
plied external forces. Excellent mechanical properties 
are obtained when the laminae are loaded in a direc- 
tion parallel to that of the fibres reinforcing them. 

Knowledge of the relative proportions and the ma- 
terial properties and the respective properties of the 
two constituents in the composite material, namely 
the fibres and the matrix, is sufficient to predict the 
mechanical behaviour of unidirectional composite 
laminae subjected to simple tensile or compressive 
loading. One of the oldest and most widely used 
models for predicting the ultimate strength of the 
composite in tensile loading has been the simple rule- 

of-mixtures which is given in Equation 1 [1-3] 

(5" c = O" m V m "1- O'fVf (1) 

where V m and Vf represent the volume fractions of the 
matrix and the fibres, respectively, in the composite, 
and cy m and ~f are their respective strengths, with ~ 
being the strength of the composite material. 

When the failure strain of the fibres in the unidirec- 
tional composite is attained and the fibre volume 
fraction is greater than a certain minimum value 
(needed for the reinforcing effect of the fibres to have a 
positive influence on the composite strength), the ulti- 
mate composite strength is given by 

O'r ~- O" m g m -[- O'fu Vf (2) 

where Cy~u, cy m and cyfu represent the ultimate com- 
posite strength, the stress in the matrix at the failure 
strain of the fibres, and the ultimate fibre strength, 
respectively. 

The above rule has some important underlying 
assumptions. They are [-4]: 
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(a) the fibres are uniformly distributed within the 
matrix, i.e. there are no fibre-rich or matrix-rich re- 
gions in the composite; 

(b) there is perfect bonding between the matrix and 
the fibres; 

(c) the composite is free of voids; 
(d) both the fibres and the matrix behave as perfect- 

ly linear elastic materials. 
Some of the practical factors influencing the longit- 

udinal strengths of unidirectional composites are mis- 
orientation of fibres, fibre strength distribution, dis- 
continuous fibres, stress concentrations, differential 
matrix reinforcement by the fibres, interface condi- 
tions and residual stresses [1]. Combinations of one 
or all of these factors result in the measured strengths 
deviating from those predicted using Equation 2. 
Most of these factors can be quantitatively deter- 
mined. For instance, by using photomicrographs of 
the composite cross-section, it is possible to determine 
the void content, the fibre volume fraction, the fibre 
misorientation and inhomogeneous spread, and the 
interaction between fibres. Stereological and other 
techniques for estimating each of the above quantities 
have long since been established [5]. Measured longit- 
udinal tensile strengths have been observed to deviate 
from the rule-of-mixtures. The deviation is a distinctly 
non-linear one with a negative departure from the 
linear values predicted by Equation 2 with the in- 
crease in fibre volume fraction, V r. This has been 
observed in a wide variety of fibre/matrix composite 
systems [6-10]. Recently, Karam [11] has proposed a 
modification to the rule-of-mixtures in Equation 2 to 
account for fibre-fibre interaction. While the details 
can be found in later sections, it suffices here to say 
that the modified rule accurately predicts the longit- 
udinal ultimate tensile strength variation with fibre 
volume fraction in carbon fibre/epoxy matrix com- 
posites E4]. Rangaraj [12] has used this modified rule 
to predict tensile strengths in carbon fibre/magnesium 
matrix composites. 

The predictions made by this modified rule become 
less accurate in predicting strengths as the fibre vol- 
ume fraction reduces. The reasons are because fibre 
misorientation and inhomogeneous fibre distribution 
have not been accounted for in this model, whereas 
they become important strength-reducing mech- 
anisms in the lower fibre volume ranges. 

It was the objective of the present work to improve 
upon Karam's model by incorporating both of the 
aforementioned factors and to use the result to predict 
longitudinal tensile strengths of a unidirectional 
composite material. Comparisons are then drawn be- 
tween the present model and Karam's modification to 
the simple rule of mixtures to determine their suit- 
ability in predicting ultimate tensile strengths of uni- 
directional composite materials. 

2. Karam's  modi f icat ions to the 
rule of mixtures:  a cr i t ique 

In real unidirectional composites at high fibre volume 
fractions, fibre-fibre interaction in the form of over- 
lapping and physical contact between adjacent fibres 
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occurs. This leads to reduced interfacial surface areas 
between the fibres and the matrix which, in turn, 
results in the deviation of tensile strength from those 
predicted by the rule-of-mixtures given in Equation 2. 

By assuming a hexagonal shape for fibre cross- 
sections in an idealized situation and using probability 
theory, Karam arrived at the following expression 

vf, of~ = v f (1  - v~)  (3) 

where Vf, err and Vf represent the effective and the 
actual fibre volume fractions in the composite. 

In real unidirectional composites, the situation is 
different from that given above in that the homogen- 
eity of fibre spread in the matrix is controlled by the 
manufacturing process, fibres separated by distances 
which are fractions of the fibre diameter create a void 
between them due to lack of penetration by the matrix 
material, and a fraction of the fibres is aligned in 
directions at an angle to the desired direction. This 
misorientation causes individual fibres to be subjected 
to local stress states which are different from the 
global stress state. This results in their premature 
failure and non-participation in the load-bearing pro- 
cess. Fibres are extremely sensitive to misorientations 
and even small deviations from the desired direction 
can lead to their failure by shear when unidirectional 
composites are loaded in tension [7]. 

In order to account for fibre-fibre interactions, a 
quantity termed as the "fibre interaction probability 
ratio", n [11], is used to relate the amount of non- 
load-bearing fibres to the quantity V 2, i.e. the relation 
between fibre volume fraction, V r, and n is 

Vr. e f r =  Vr(1 - nZV~f) (4) 

Upon substitution of Equation 4 into the fibre 
strength contribution part of Equation 2, the modifi- 
cation to the rule-of-mixtures is obtained. The modi- 
fied equation is 

O'cu = O-mV m + O'fuVf(1 - n2V?) (5) 

Comparison between measured and predicted 
values of tensile strength using Equation 2 leads to the 
following equation for n 

AcYcu = C~fun2V 3 (6) 

which gives 

A(~cu n 2 - (7) 
CYfu V? 

where AOcu is the difference between measured and 
predicted composite ultimate tensile strengths from 
Equation 2 and the rest of the symbols have the same 
meanings as before. 

A simple technique of estimating n from micro- 
graphs of composite laminae cross-sections taken at 
right angles to the fibre orientation directions has also 
been provided elsewhere Ell]. Using quantitative 
stereology techniques, the following equation has been 
derived to compute n. 

n2 _ S r 1 (8) 
S, V~ 

where Sf and St are the surface of the fibres in the 



micrograph free from contact with the matrix and the 
total external surface of the fibres, respectively. Each 
of these two quantities can be established by drawing 
a line of length L on the micrograph and determining 
the number of times, N, the line intersects the desired 
surface. The value of S for that surface is then given by 

S = 2 N- (9) 
L 

Using Equation 7, differences between measured 
and predicted values of ultimate tensile strengths from 
Equation 2, values of n are calculated. Using a con- 
stant value of n is necessary in Equation 5 because it is 
assumed to be constant there. A value of n from a 
certain Vf range is then chosen and used in conjunc- 
tion with pre-determined values of CYm and (rfu ' in 
Equation 5 to estimate ultimate longitudinal tensile 
strengths. 

3. The proposed model 
3.1. Inhomogeneity of fibre spread 
The model given in the last section does not account 
for fibre misorientation and inhomogeneity of fibre 
spread. A simple modification to Equation 5 is pro- 
posed in this section to account for both of these 
factors. 

A schematic drawing of the cross-section of a real 
composite material at right angles to the fibre/loading 
direction showing differential reinforcement of the 
matrix by the fibres is shown in Fig. 1. As shown, 
certain areas of the composite cross-section which are 
much larger than the average fibre diameter have no 
reinforcement. When the composite is loaded, these 
areas behave as a pure matrix material. In other 
words, the composite behaves as a two-material sys- 

(rv],sor~~ec rated' ,ibres ~ 

d matrix 

Fib;e;fction Voids / - 

Figure 1 Schematic drawing of the cross-section of a unidirectional 
fibre-reinforced composite material. 

tem, one being the composite itself and the second 
being the unreinforced matrix material or the matrix 
material which does not feel the effect of the fibre 
reinforcement. 

Denoting the total area of the unreinforced matrix 
as Aun, we have 

Aef f = Atota I -- Aun (10) 

where Aef f and Atota I represent the area which has fibre 
reinforcement and the total cross-sectional area of the 
composite, respectively. If the two-material system 
thus described is subjected to the same strain, then the 
strength of the system is the sum of the strengths of the 
two materials. 

If the ratio of Aef  f to Atota I is X, then the ratio of Au, ~ 
to Atota I is (1 -- x) because the sum of Aef f and Aun is 
equal to Atota 1. Further, the new fibre volume fraction 
in the area Aef f is Vf which is related to the nominal 
fibre volume fraction, Vf, of the composite by the 
relation, 

Vf 
x -  V'e (11) 

and the new value of n (denoted n') is 

n, 2 AO'cu 
-- O.fu V,f3 (12) 

When Equation 11 is substituted into Equation 12, the 
expression for n' in terms of x is 

X3z~(3"cu 
/1 '2 -- (13) 

~fu V~ 

The relation between n and n' can be obtained by 
dividing Equation 13 by Equation 7. We obtain 

rl "2 -= x 3 n  2 (14) 

Using Equations 11, 13 and 14 in Equation 5 and 
simplifying, we obtain the modified rule for the ulti- 
mate tensile strength of unidirectional composites as 

Crcu = X[-CYm(1 -- Vf/x) + crfu(Vf/x)(1 - n2xV2)] 

+ (1 - x)~*m (15) 

where the second part of the equation is the strength of 
the matrix material in the composite which does not 
feel the fibre reinforcement, with or* being the strength 
of the matrix material tested individually. Solving for 
x in terms of Vf, we get 

Vf(O-fu -- O"m) + (5"~ -- O'cu 
X ---~ y/2Wf3~ - (~'m - c~*) (16) 

We call x the "fibre distribution skewness factor". 
When using this model, the values of n are computed 
using either technique described in the previous sec- 
tion and established for a certain fibre volume fraction 
range of interest. Then, using Equat ion  16, the fibre 
distribution skewness factor, x, is calculated for vari- 
ous values of Vf. An example is illustrated in later 
sections. After a value of x is fixed for an appropriate 
range of Vf values, the strength predictions given by 
Equation 15 are computed. The modification at this 
stage assumes that fibre-fibre interaction and in- 
homogeneous fibre spread in the matrix are solely 
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responsible for deviations of measured ultimate tensile 
strengths from that given by the rule-of-mixtures. 

3.2. Fibre miso r i en ta t ion  
Accounting for fibre misorientation is a simple exten- 
sion of the above process. If y represents the fraction of 
the fibres which are oriented to the loading direction 
so that they can participate in the load-bearing pro- 
cess, then the effective fibre volume fraction in Equa- 
tion 15, times y, represents the actual volume fraction 
of the fibres after accounting for fibre misorientation 
and inhomogeneous fibre spread. The prediction 
equation for the composite ultimate tensile strength 
accounting for fibre misorientation is then given by 

cro~ = X[CY'm(1 -- Vf/x) + Gfuy(Vf/x)(1 - nZxV2)] 

- [ -  ( l  - -  X)I3" m (17) 

where y represents a fraction of the fibres which are 
oriented such that they are effective in carrying the 
applied load. The quantity y will be termed the "fibre 
alignment fraction" hereon in this article. Solving the 
above equation for y in terms of V e leads to the 
following relation for y 

O'cu - -  O'm(1 - -  Vf) + x (o '*  m --  O"m) 
y = CrfuVf( 1 _ nZxV~) (18) 

4. Ver i f i ca t ions  of  the present  rule 
and discussion of results 

Mittelman and Roman [6] measured ultimate longit- 
udinal tensile strengths of unidirectional Kevlar/ 
epoxy composites as a function of the fibre volume 
fraction, Vf. Their data have also been used by Karam 
[11] to confirm the efficacy his modification has ad- 
ded to the rule-of-mixtures given in Equation 2. The 
same data were used to determine values of the fibre 
distribution skewness factor, x, using Equation 16. In 
performing these computations, both of the quantities 
cr* and ~m were taken to be of the same magnitude. 
Also, changes in strength in epoxy resins, which have 
been reported to be a function of the volume of the 
material stressed [13], i.e. a size effect, have been 
ignored. Valuesof  x computed as a function of fibre 
volume fraction, Vf, have been plotted in Fig. 2. It can 
be seen that values of x begin to approach a stable 
high fibre volume fraction range between 0.9 and 1.0. 
A median value of x, equal to 0.97, is shown by a 
straight line on this plot. Using this value of x in 
Equation 17, values of the composite ultimate strength 
were determined. These results are shown in Fig. 3 as a 
function of the fibre volume fraction, Vf. Also shown 
are the measured ultimate strengths and the predic- 
tions by the Karam's rule and also the rul~e-of-mix - 
tures. As can be seen, the present model outperforms 
both the rule~of-mixtures and Karam's modified ver- 
sion at the lower fibre volume fraction ranges but at 
the same time performs just as well as Karam's rule in 
the high fibre volume fraction range (Vf > 0.6) where 
Karam's rule predicts tensile strengths very close to 
the measured values. Also, values of x calculated 
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Figure 2 Variation of the fibre distribution skewness factor, x, with 
the fibre volume fraction, Vf. 
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Figure 3 Comparison of (D) measured and predicted ultimate ten- 
sile strengths using ( ) rule-of-mixtures, (- - -)  Karam's rule and 
(~ )  Equation 15. 

indicate that at high values of Vf, the composite comes 
closer to becoming a one-material system, i.e. (1 - x) 
values become very small. 

Mittelman and Roman [-6] also presented data 
showing the dependence of the coefficient of variation 
(CV) of fibre numbers as a function of Vf in their 
article. The CV was calculated using a sample popula- 
tion of six randomly chosen cross-sections of the 
composite. About 15% of the cross-sectional area of 
each of the samples was covered and the number of 
fibres enclosed in each area counted. This quantity 
was then non-dimensionalized by the number of fibres 
calculated to be present using the nominal fibre vol- 
ume fraction. Their study indicated a decrease of CV 
with increase of Vf until a value of Vf of about 0.46, 
after which the CV levelled off at about 4%. It is seen 
that the fibre distribution skewness factor, x, at high 
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values of Vf (0.5 < Vf < 0.6) is related to the CV by the 
simple relation 

x = 1 - CV (19) 

when the CV is expressed as a fraction. Comparison of 
the values of x computed from Equation 19 show 
good agreement with those values shown in Fig. 2 at 
high values of Vf. Therefore, the simple technique used 
by Mittelman and Roman can be used as an experi- 
mental technique to determine x, which can then be 
used in Equation 15 in the absence of experimental 
ultimate tensile strength data. 

As a next step, the fibre orientation fraction, y, was 
computed as a function of the fibre volume fraction, 
Vf, given by Equation 18 and the values of y thus 
obtained are shown plotted as a function of V~, in Fig. 
4. As shown, values ofy for the present system increase 
with Vf and attain steady values for high fibre volume 
fractions (Vf > 0.6). Thus, values of n, x and y are all 
seen to approach unity as a high fibre volume fraction 
is approached. Also, at these values of Vf, the value of 
y indicates that for the present composite system, 
almost all the fibres were aligned to the loading 
direction within an angle (as predicted by the 
Halpin-Tsai equation [3]) so as to be able to particip- 
ate in carrying the load, i.e. fibre misorientation be- 
comes less of a problem in the high Vf range. 

The ultimate tensile strengths calculated using 
Equation 18 are compared with those predicted by 
Karam's modification, the classical rule-of-mixtures 
and experimentally measured values, in Fig. 5. The use 
of the fibre orientation factor, y, results in predicted 
ultimate tensile strengths becoming closer to those 
measured in the lower fibre volume fraction ranges 
(0.3 < I/f < 0.5). However, at higher values of Vf, the 
use of y reduces the predicted tensile strengths slightly. 
This is due to the fact that the value of y used was 
more adept at predicting strengths in the lower Vf 
ranges. Also, as can be seen from Fig. 4, values of y in 
the higher Vf ranges are very close to unity and 
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Figure 5 Comparison of(D)  measured and predicted ultimate ten- 
sile strengths using ( ) rule-of-mixtures, (-  - ) Karam's rule and 
(Or) Equation 18. 

therefore indicate that Equation 15 would be more 
appropriate in describing the strength variation for 
these ranges of fibre volume fractions. 

Standardized stereological techniques for deter- 
mination of fibre orientation angles are available. 
Fibre orientation distribution in continuously reinfor- 
ced unidirectional composites has been recently stud- 
ied by Yurgartis [14]. It has been clearly established 
that the fibre orientation angle distribution is normal 
and has been demonstrated to vary from the pre-preg 
to the laminate stage. Clear causes for this variation 
are not known, but have been attributed to be related 
to the manufacturing process [15]. It has also been 
shown that the normal distribution equations for the 
in-plane and out-of-plane inclination angles can be 
combined to obtain a binormal distribution for over- 
all fibre orientation angle distribution. These equa- 
tions would be valid for a particular range of Vf values 
and for a particular manufacturing process. This tech- 
nique could be used to give the standard deviation of 
the fibre inclination angle distribution which can then 
be used with the cut-off inclination fibre inclination 
angle predicted by the Halpin-Tsai equation [3], to 
determine approximately the fibre alignment fraction, 
y, for use in strength predictions. 

5. C o n c l u s i o n s  
A modification of the non-linear relation between 
ultimate tensile strengths of composites and the fibre 
volume fraction, Vf, is presented. The modification 
accounts for fibre misorientation and inhomogeneous 
spread within the matrix. Using previously published 
data, the present modification has been shown to be 
superior to the non-linear equation suggested by 
Karam at low fibre volume fractions. Simple equa- 
tions for determination of these two factors have also 
been presented. It is hoped that the use of the present 
equation(s) along with the accompanying stereological 
techniques already established can lead to reasonably 
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close predictions of ultimate tensile strength of the 
composite with a prior knowledge of the quantities Cm 
and ~fu without actual experimentation. 
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